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Abstract. We formulate differential susceptibility and differential infectivity
models for disease transmission in this paper. The susceptibles are divided into
n groups based on their susceptibilities, and the infectives are divided into m
groups according to their infectivities. Both the standard incidence and the
bilinear incidence are considered for different diseases. We obtain explicit
formulas for the reproductive number. We define the reproductive number
for each subgroup. Then the reproductive number for the entire population
is a weighted average of those reproductive numbers for the subgroups. The
formulas for the reproductive number are derived from the local stability of
the infection-free equilibrium. We show that the infection-free equilibrium is
globally stable as the reproductive number is less than one for the models with
the bilinear incidence or with the standard incidence but no disease-induced
death. We then show that if the reproductive number is greater than one,
there exists a unique endemic equilibrium for these models. For the general
cases of the models with the standard incidence and death, conditions are
derived to ensure the uniqueness of the endemic equilibrium. We also provide
numerical examples to demonstrate that the unique endemic equilibrium is
asymptotically stable if it exists.

In honor of Professor Zhien Ma’s 70th birthday

1. Introduction. Genetic variation of susceptible individuals may lead to their
differentiation of susceptibility on infection. The efficacy of available vaccinations
for infectious diseases, such as rubeola, more commonly known as the “red measles”,
and hepatitis B (HB), is not perfect. Vaccinated individuals may still contract the
disease and the susceptibility varies from individual to individual [1, 2].

Through their surface expression of CD38, CD4+ T cells have shown differ-
ential susceptibility to M- and T-tropic HIV-1 infection. The CD4+CD38− and
CD4+CD45RA− subsets have higher susceptibility to infection with the M-tropic
Ba-L strain of HIV-1, and the CD4+CD38+ subset has higher susceptibility to
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infection with the T-tropic (LAI) strain of HIV-1 [3]. For the spread of Chagas dis-
ease, uninfected individuals are found in all reported studies of endemic areas, and
more than half of the variation in seropositivity is attributable to genetic factors,
which influences the differential outcomes of T. cruzi infection [4, 5].

On the other hand, couples studies for HIV transmissions have found that some
individuals transfer the infection to their sexual partners after only a few contacts,
but other couples have had thousands of unprotected contacts without transferring
infection [6–9]. A few epidemiological studies for small cohorts have found that a
partner either transferred the virus early in the course of infection, or did not trans-
ferr at all [10]. Some researchers have found evidence for increased transmission late
in infection [11, 12], although others have not [9, 10]. Sometimes late-stage trans-
mission does not occur because of the increased use of protective methods among
couples; however, late-stage transmission occurred infrequently in one study even
when the use of protective methods was controlled for in the data analysis [9].

These couples studies support that there is variability in the infectivity among
infected individuals, variability in the susceptibility of their partners, or both. The
HIV-1 RNA data support the idea of variations in infectiousness and suggest that
there may be orders of magnitude differences in the viral shedding rates both over
time and between individuals.

In previous studies [13, 14], we separated the issues of differential susceptibility
(DS) and differential infectivity (DI) by proposing different mathematical models
to investigate each effect independently. We assumed differential susceptibilities of
susceptibles but homogeneous infectivity of infectives in the DS model [14], and
homogeneous susceptibility of susceptibles but differential infectivities of infectives
in the DI model [13].

These studies provided insight into the transmission dynamics of diseases with
differential susceptibility or differential infectivity but not both. For many disease
transmissions, the susceptibility and infectivity factors are coupled and cannot be
completely separated. Findings in the couples studies for HIV transmissions may
be due to variability in both susceptibility and infectivity. To further understand
these phenomena, we propose a combined differential susceptibility and differential
infectivity (DSDI) model in this paper.

2. The Model Formulation. We consider the spread of a disease in a randomly
mixing population that approaches a steady state, S0, if there is no disease infection.
We assume that infected individuals become fully immune or are removed from the
susceptible population after they recover from the infection. We approximate the
transmission dynamics with an SIR (Susceptible → Infective → Recovered) model.
We assume that susceptibles may have different susceptibility and divide them into
n groups, S1, S2, . . . , Sn. Here, the individuals in each group have homogeneous
susceptibility, but the susceptibilities of individuals from different groups are dis-
tinct. The susceptibles are distributed into the n susceptible subgroups, based on
their inherent susceptibility, in such a way that the input flow into group Si is piµS0

with
n∑

i=1

pi = 1. The infectives are divided into m groups, I1, I2, . . . , Im, such that

upon infection, a susceptible individual in group Si enters group Ij with probability

qij and stays in this group until becoming recovered or removed, where
m∑

j=1

qij = 1,

for i = 1, 2, . . . , n.
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We assume full immunity of recovered individuals or complete isolation after
individuals are infected and diagnosed, and we group all these individuals to group
R. The transmission dynamics of infection are governed by the system of differential
equations

dSi

dt
=µ(piS

0 − Si)− λiSi, i = 1, . . . , n,

dIj

dt
=

n∑

i=1

qijλiSi − (µ + νj)Ij , j = 1, . . . , m,

dR

dt
=

m∑

j=1

νjIj − (µ + δ)R,

(2.1)

where µ is the natural death rate in the absence of infection, νj is the recovery
rate for infectives in group Ij , and δ is the death rate of recovered or removed
individuals. The rate of infection for susceptibles in group Si is given by

λi = c(N)
m∑

j=1

αiβj
Ij

N
=

c(N)
N

αi

m∑

j=1

βjIj , (2.2)

where c(N) is the average number of contacts per individual with N =
∑n

i=1 Si +∑m
j=1 Ij + R, αi is the susceptibility of susceptible individuals in group Si, and βj

is the infectiousness of infected individuals in group Ij .
As was pointed out in [14–16], the number of contacts per person, in general, is

a function of the population size. The choice of the function c(N) depends on the
modeled disease or situations investigated. For certain diseases, such as influenza
and measles, or in certain ranges of population sizes, it is appropriate to assume that
the number of contacts is proportional to the population size. Let C(N) := c0N in
this case. Then the rate of infection in group Si has a bilinear form given by

λi = c0αi

m∑

j=1

βjIj . (2.3)

For some other diseases, such as sexually transmitted diseases, or in different
situations where contacts are saturated, the number of contacts are approximately
constant. If we write c(N) := r, then the rate of infection in group Si has a standard
form given by

λi =
rαi

N

m∑

j=1

βjIj . (2.4)

3. The Reproductive Number and Global Stability of the Infection-free
Equilibrium. A key character in classic epidemiological models is the reproduc-
tive number, denoted by R0, such that if R0 ≤ 1, the modeled disease dies out, and
if R0 > 1, the disease spreads. The reproductive number is usually defined by the
spectral radius of the next-generation operator [17–20]. It can also be determined
by the local stability of the infection-free equilibrium, that is, the dominant eigen-
value of the Jacobian matrix at the infection-free equilibrium for models in a finite
dimensional space [21,22].
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3.1. The Reproductive Number. We derive an explicit formula for R0 by in-
vestigating the local stability of the infection-free equilibrium as follows.

Define I := (I1, . . . , Im)T , and note that the partial derivatives of λi with respect
to Ij at the infection-free equilibrium with I = 0 and R = 0, are

∂λi

∂Ij

∣∣∣∣
(I,R)=(0,0)

=
c(S0)
S0

αiβj , i = 1, . . . , n, j = 1, ·,m.

Then the Jacobian at the infection-free equilibrium for model (2.1), with the stan-
dard or bilinear incidence, has the form

D =




D11 · 0
0 D22 0
0 · −(µ + δ)


 , (3.1)

where
D11 = diag(−µ, . . . ,−µ)

and

D22 =




−σ1 + L1β1 L1β2 . . . L1βm

L2β1 −σ2 + L2β2 . . . L2βm

...
...

. . .
...

Lmβ1 Lmβ2 . . . −σm + Lmβm


 . (3.2)

Here we define σj := µ + νj , and Lj = c(S0)
n∑

i=1

qijαipi, j = 1, . . . , m. Then the

local stability of the infection-free equilibrium is determined by D22.
Consider matrix −D22. It has all off-diagonal elements negative. Let V :=

(L1/σ1, . . . , Lm/σm)T , then

−D22 V =


1−

m∑

j=1

Ljβj

σj


 (L1, . . . , Lm)T

.

Since Lj > 0, j = 1, . . . , m, if we define R0 :=
m∑

j=1

Ljβj

σj
, then it follows from M-

matrix theory that each eigenvalue of D22 has negative real part, and hence the
infection-free equilibrium is locally asymptotically stable if R0 < 1.

By mathematical induction, we can show that

detD22 = (−1)m+1
m∏

j=1

σj(R0 − 1).

Then if R0 > 1, D22 has at least one positive eigenvalue. Hence, the reproductive
number for model (2.1) can be defined by R0, which is expressed as

R0 =
m∑

j=1

c(S0)
(

n∑
i=1

qijαipi

)
βj

µ + νj
=

n∑

i=1

pic(S0)αi

m∑

j=1

qijβj

µ + νj
. (3.3)

In particular, the reproductive number for model (2.1) with the bilinear incidence
is

R0 =
n∑

i=1

pic0S
0αi

m∑

j=1

qijβj

µ + νj
(3.4)
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and with the standard incidence is

R0 =
n∑

i=1

pirαi

m∑

j=1

qijβj

µ + νj
. (3.5)

In summary, we have the following theorem.

Theorem 3.1. Define the reproductive number of infection, R0, for model (2.1) by
(3.3). Then the infection-free equilibrium is locally asymptotically stable if R0 < 1,
and unstable if R0 > 1.

Notice that 1/(µ+νj) is the duration of infection of infectives in group Ij . Then
m∑

j=1

qij

µ + νj
:= τ̄i

is the mean duration of infection from all infectives to susceptibles in group Si, and

αi
1
τ̄i

m∑

j=1

qijβj

µ + νj
:= β̄i

is the mean transmission probability from all infectives to susceptibles in group
Si [13, 14].

Define the reproductive number of infection in the susceptible group Si from all
infectives to be

R0i = c(S0)β̄iτ̄i,

for the standard and bilinear incidence models. Then the reproductive number
for the entire population can be expressed as the weighted average of those group
reproductive numbers such that

R0 =
n∑

i=1

piR0i. (3.6)

3.2. Global Stability of the Infection-free Equilibrium. As R0 < 1, we have
shown the local stability of the infection-free equilibrium. Now we show that the
infection-free equilibrium is also globally asymptotically stable if R0 < 1 for the
bilinear incidence case and for the case where the incidence is standard, but there
is no disease-induced death. Therefore, the possibility of a backward bifurcation
from the infection-free equilibrium in these cases is excluded.

Since the total population satisfies the equation
dN

dt
= µS0 − µN − δR,

we have 0 ≤ N ≤ S0. Let S := (S1, . . . , Sn)T and define the region G :={
(S, I,R)

∣∣0 ≤ N ≤ S0
}
. Then G is a positively time-invariant set for system (2.1).

Moreover, it follows from (2.1) that
dSi

dt
≤ µ(piS

0 − Si), i = 1, . . . , n,

in set G. Since the solutions of the equations
dSi

dt
= µ(piS

0 − Si), i = 1, . . . , n,

approach piS
0, by the comparison principle we have

Si(t) ≤ piS
0 (3.7)



94 JAMES M. HYMAN, JIA LI

in set G.

3.2.1. The Bilinear Incidence Case. Assume the infection rate follows the bilinear
incidence. Define vectors P := (p1, . . . , pn)T and B := (β1, . . . , βm)T , and define
matrices A := diag(α1, . . . , αn), D := diag(σ1, . . . , σm), and

Q :=




q11 q12 . . . q1m

q21 q22 . . . q2m

...
...

. . .
...

qn1 qn2 . . . qnm


 .

Then system (2.1), in the bilinear incidence case, can be written as

dS

dt
=µ(S0P − S)− c0B

T IAS,

dI

dt
=c0B

T IQT AS −DI,

dR

dt
=vI − (µ + δ)R,

(3.8)

where v := (ν1, . . . , νn)T , and the reproductive number in (3.4) can be expressed
as

R0 = c0S
0BT D−1QT AP. (3.9)

Define function V = BT D−1I for Ij ≥ 0. Then V is positive definite. It follows
from (3.8) that

dV

dt
=BT D−1

(
c0B

T IQT AS −DI
)

= c0B
T D−1QT ASBT I −BT I

≤c0S
0BT D−1QT APBT I −BT I = (R0 − 1) BT I.

(3.10)

Then dV/dt ≤ 0 for t sufficiently large, if R0 < 1. Notice that dV/dt = 0
only if I = 0. Hence the infection-free equilibrium is the only point in the set
{(S, I,R) | dV/dt = 0}. Therefore, by Liapunov stability theory, the infection-free
equilibrium is globally asymptotically stable for the bilinear incidence case.

Theorem 3.2. The infection-free equilibrium of system (2.1) with bilinear inci-
dence is always globally asymptotically stable if R0 < 1.

3.2.2. The Standard Incidence Case without Disease-Induced Death. We assume
that the incidence of infection has the standard form. By using the matrix notation,
the equation for the infectives has the form

dI

dt
=

r

N
QT ASBT I −DI.

It follows from
dN

dt
= µS0 − µN − δR > µS0 − (µ + δ)N

that

N ≥ µS0

µ + δ
,

in set G, again from the comparison principle. Then the infection rate satisfies

λi =
rαi

S0

m∑

j=1

βjIj ≤ (µ + δ)rαi

µS0
BT I. (3.11)
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Using the same Liapunov function V = BT D−1I and inequalities (3.7) and
(3.11), we have

dV

dt
=BT D−1

( r

N
BT IQT AS −DI

)

≤ (µ + δ)
µ

rBT D−1QT APBT I −BT I =
(

µ + δ

µ
R0 − 1

)
BT I.

(3.12)

Then, it follows again from Liapunov stability theory that the infection-free equi-
librium is globally asymptotically stable if

R0 ≤ µ

µ + δ
≤ 1. (3.13)

Here we use the fact that if dV/dt = 0, then since all the components of A, B, D,
and Q are nonnegative, the omega-set of system (2.1) in this case contains only the
infection-free equilibrium, which implies its global asymptotic stability.

In summary we have the following theorem.

Theorem 3.3. The infection-free equilibrium of system (2.1) with standard inci-
dence is globally asymptotically stable if R0 <

µ

µ + δ
≤ 1.

As was discussed in section 2, the disease-induced death can be relatively small
for some diseases, and then δ is eligible. In those cases, the infection-free equilibrium
is globally asymptotically stable if R0 < 1.

4. Endemic Equilibrium. We have shown in section 3 that if R0 > 1, the
infection-free equilibrium is unstable, and then the disease spreads if a small infec-
tion is introduced into the population. Now we assume R0 > 1 and show that there
exists an endemic equilibrium all of whose components are positive.

For system (2.1), an endemic equilibrium needs to satisfy the equations

µ(piS
0 − Si)− λiSi = 0, i = 1, . . . , n,

n∑

i=1

qijλiSi − (µ + νj)Ij = 0, j = 1, . . . , m,

m∑

j=1

νjIj = (µ + δ)R.

(4.1)

We first assume that the infection follows bilinear incidence. Then we let W :=
c0

∑m
j=1 βjIj , such that λi = Wαi. Solving (4.1) for Si and then for Ii yields

Si =
µpiS

0

µ + αiW
, i = 1, . . . , n,

Ij =
µWS0

σj

n∑

i=1

qijαipi

µ + αiW
, j = 1, . . . , m.

(4.2)

Hence

W = c0

m∑

j=1

βjIj = c0µWS0
m∑

j=1

n∑

i=1

βjqijαipi

σj(µ + αiW )
.

Define

H1(W ) := c0µS0
m∑

j=1

n∑

i=1

βjqijαipi

σj(µ + αiW )
− 1.
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Then there exists an endemic equilibrium for system (2.1) with bilinear incidence
if and only if there exists a positive root for H1(W ) = 0.

Note that

H ′
1(W ) = −c0µS0

m∑

j=1

n∑

i=1

βjqijα
2
i pi

σj(µ + αiW )2
< 0,

limW→∞H1(W ) = −1, and

H1(0) = R0 − 1.

Hence there exists a unique endemic equilibrium if and only if R0 > 1.
We then assume that the infection follows standard incidence. By letting W =

r
N

∑m
j=1 βjIj , components Si and Ij are still given by formulas (4.2), and component

R satisfies

R =
1

µ + δ

m∑

j=1

νjIj =
µWS0

µ + δ

m∑

j=1

νj

σj

n∑

i=1

qijαipi

µ + αiW
, (4.3)

at an endemic equilibrium. Hence we have

N = S0 − δ

µ
R = S0


1− δW

µ + δ

m∑

j=1

νj

σj

n∑

i=1

qijαipi

µ + αiW


 . (4.4)

Substituting (4.2) and (4.4) into W = r
N

∑m
j=1 βjIj , we have

rµWS0
m∑

j=1

n∑

i=1

βjqijαipi

σj(µ + αiW )
= WS0


1− δW

µ + δ

m∑

j=1

νj

σj

n∑

i=1

qijαipi

µ + αiW


 .

Define function H2(W ) by

H2(W ) :=rµ

m∑

j=1

n∑

i=1

qijαipiβj

σj(µ + αiW )
+

δ

µ + δ

m∑

j=1

n∑

i=1

νjqijαipiW

σj(µ + αiW )
− 1

=
n∑

i=1

µpi

µ + αiW


R0i +

δαi

µ(µ + δ)

m∑

j=1

qijνj

σj
W


− 1.

(4.5)

Then, there exists a positive endemic equilibrium if and only if there exists a positive
solution to H2(W ) = 0.

Since H2(0) =
n∑

i=1

piR0i − 1 = R0 − 1, and

lim
W→∞

H2(W ) =
n∑

i=1

δpi

µ + δ

m∑

j=1

qijνj

µ + νj
− 1 <

n∑

i=1

pi

m∑

j=1

qij − 1 = 0,

there exists at least one positive solution of H2(W ) = 0, that is, an endemic equi-
librium of system (2.1), if R0 > 1.
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Simple calculation shows that

H ′
2(W ) =−

n∑

i=1

µpiαi

(µ + αiW )2


R0i +

δαi

µ(µ + δ)

m∑

j=1

qijνj

σj

(
W − µ + αiW

αi

)


=−
n∑

i=1

µpiαi

(µ + αiW )2


R0i − δ

µ + δ

m∑

j=1

qijνj

σj




=−
n∑

i=1

µpiαi

(µ + αiW )2

m∑

j=1

qij

σj

(
rαiβj − δνj

µ + δ

)
.

(4.6)

For the case of no disease-induced death, δ = 0. Then H ′
2(W ) < 0 for all W ≥ 0.

Hence the endemic equilibrium is unique. If δ > 0, we notice that

δ

µ + δ

m∑

j=1

qijνj

σj
=

δ

µ + δ

m∑

j=1

qijνj

µ + νj
< 1.

Then if R0i > 1 for all i = 1, . . . , n, H ′
2(W ) < 0 for all W ≥ 0. Or if rαiβj >

(δνj)/(µ + δ), for all i = 1, . . . , n, and j = 1, . . . , m, H ′
2(W ) < 0 for all W ≥ 0.

Then we obtain the uniqueness of the endemic equilibrium. We summarize these
results as follows.

Theorem 4.1. There exists a unique endemic equilibrium, all of whose components
are positive, for system (2.1) with bilinear incidence or with standard incidence and
no disease-induced death if R0 > 1. For system (2.1) with standard incidence and
disease-induced death, if (a) R0i > 1 for i = 1, . . . , n, or (b) rαiβj > (δνj)/(µ + δ),
for i = 1, . . . , n, and j = 1, . . . , m, then there exists a unique endemic equilibrium
as R0 > 1.

Remark. Condition (a) in Theorem 4.1 is a strong condition. There could be many
groups with R0i ≤ 1, but we still have R0 > 1. Condition (b) is much weaker.
Suppose condition (b) holds. Then

R0i = rαi

m∑

j=1

qijβj

µ + νj
>

δ

µ + δ

m∑

j=1

νj

µ + νj
.

Notice that
∑m

j=1 qij = 1. The qualities δ/(µ + δ)
∑m

j=1 νj/(µ + νj) can be very
small.

The stability analysis for the endemic equilibrium seems analytically untractable,
but we believe that the unique endemic equilibrium is asymptotically stable. We
provide a numerical example below to show that solutions approach a unique en-
demic equilibrium asymptotically.

Example 1. We assume there are four groups of susceptibles and four groups of
infectives with standard incidence of infection. That is, our model equations are
based on (2.1) with the infection rate given by (2.4). We assume that the natural
death µ = 0.012; the death rate of recovered individuals δ = 0.05; the average
number of contacts r = 25; the fractions of input flow into susceptible groups are
p1 = 0.3, p2 = 0.1, p3 = 0.5, and p4 = 0.1; the recovery rates for infectives in the
four groups are ν1 = 0.5, ν2 = 0.6, ν3 = 0.5, and ν4 = 0.4; the susceptibilities for
the four susceptible groups are α1 = 0.2, α2 = 0.05, α3 = 0.1, and α4 = 0.35; and
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the infectivities of the four infective groups are β1 = 0.3, β2 = 0.25, β3 = 0.15,
and β4 = 0.07. We use the following probabilities, qij , for susceptibles entering the
infective groups:

q11 = 0.3, q12 = 0.2, q13 = 0.4, q14 = 0.1,
q21 = 0.2, q22 = 0.15, q23 = 0.4, q24 = 0.25,
q31 = 0.1, q32 = 0.1, q33 = 0.3, q34 = 0.5,
q41 = 0.3, q42 = 0.3, q43 = 0.1, q44 = 0.3.

The reproductive numbers for the four infective groups are

R01 = 1.9583, R02 = 0.4227, R03 = 0.6807, R04 = 3.3127.

Hence the reproductive number for the entire population is R0 = 1.3014, and there
exists a unique endemic equilibrium given by

S1 = 0.1960, S2 = 0.1005, S3 = 0.4007, S4 = 0.0510,
I1 = 0.0029, I2 = 0.0019, I3 = 0.0041, I4 = 0.0049, R = 0.1063.

This unique endemic equilibrium is asymptotically stable. With various initial sizes
for the susceptible, infective, and removed groups, susceptibles and infectives ap-
proach this endemic equilibrium asymptotically. The numerical simulations with
initial sizes (1, 1, 1, 1, 0.1, 0.1, 0.1, 0.1, 0) and (0.5, 0.5, 0.5, 0.17, 0.17, 0.17, 0.17, 0.17,
0.5) are illustrated in Figure 1 where only infectives are shown. While early tem-
poral oscillations are exhibited, solutions approach the endemic equilibrium even-
tually.
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Figure 4.1. The model parameters are given in Example 1.
Only infectives are shown in these figures. Initial sizes for the
left- and right-hand figures are (1, 1, 1, 1, 0.1, 0.1, 0.1, 0.1, 0) and
(0.5, 0.5, 0.5, 0.17, 0.17, 0.17, 0.17, 0.17, 0.5), respectively. While
there are early temporal oscillations, the susceptible, infectives,
and removeds asymptotically approach the unique endemic equi-
librium, the values of whose components are given in Example 1.

5. Concluding Remarks. We have formulated compartmental differential sus-
ceptibility and differential models in various settings. The susceptibles and in-
fectives are divided into n and m subgroups based on their susceptibilities and
infectivities, respectively. We considered the situations where the number of con-
tacts is either proportional to the total population size or a constant. We then
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considered the cases where the disease-induced mortality is negligible or needs to
be included.

We derived an explicit formula for the reproductive number, R0, for all models.
We then showed that the infection-free equilibrium, whose component of infectives
is zero, is globally asymptotically stable if R0 < 1 and is unstable if R0 > 1 for
the models with bilinear incidence of infection or for the models with standard
incidence of infection but with no disease-induced mortality.

If R0 > 1, we further proved that there exists a unique endemic equilibrium with
all components positive for the models with bilinear incidence. For the models with
standard incidence, we showed that there exists at least one endemic equilibrium
and obtained sufficient conditions under which the endemic equilibrium is unique.

The transmission dynamics of the DSDI models 2.1 are similar to the dynamics of
the DS models studied in [14]. Neither backward bifurcation nor multiple endemic
equilibria appear.

Similarly as in [14], the explicit formulas of R0 for the models in this paper
fit well in the calculations of R0 for a variety of epidemiological models in the
literature [19, 22–24]. That is, the reproductive number for each subgroup, R0i,
is defined as a product of the mean number of contacts, the mean infectivity, and
the mean duration of infection. Then, the reproductive number for the whole
population, R0, is defined as a weighted average of those R0i, weighted by the
distribution of the influx into the susceptible subgroups.

The DSDI models can be also applied to predation interaction with either the
principle of mass action or ratio dependence. The n susceptible subgroups can
be used for n prey populations, and the m infective subgroups can be used for m
predator populations [14].
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